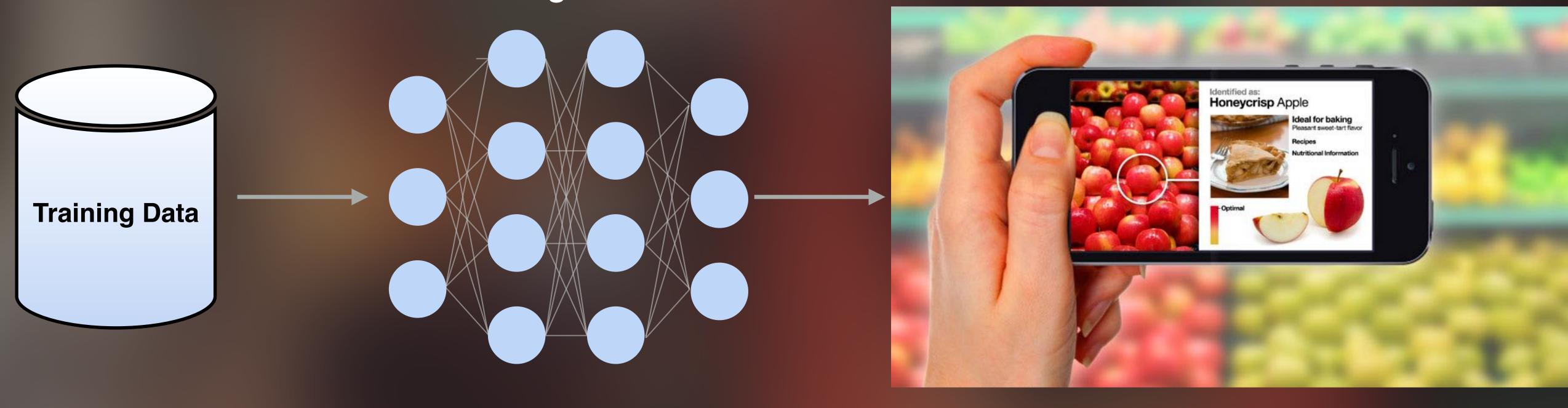


CS540 Introduction to Artificial Intelligence Al in the Real World

Sharon Yixuan Li University of Wisconsin-Madison

April 29, 2021

Food Image Classifier

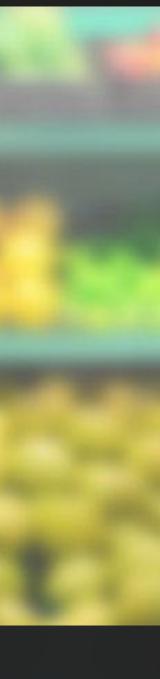


A running example

Basic steps to build an ML system

The steps overview

- Step 1: collect data
- Step 2: look at your data
- Step 3: Create train/dev/test splits
- Step 4: build model
- Step 5: Evaluate your model
- Step 6: Diagnose error and repeat



Acquire and annotate data

Data should be **diverse** (annotation can be expensive)

Data should be realistic

Ideal data sampled from the distribution your product will be run on.

Real photo taken by users

Professional ads photo

Look at your data.

Look at your data.

- You have some food images, take a closer look at them!
- Food from Europe different than from Africa? from Asia?
- Any potential bias in your data?
- Have the right people look at your data.
- Do this at every stage!

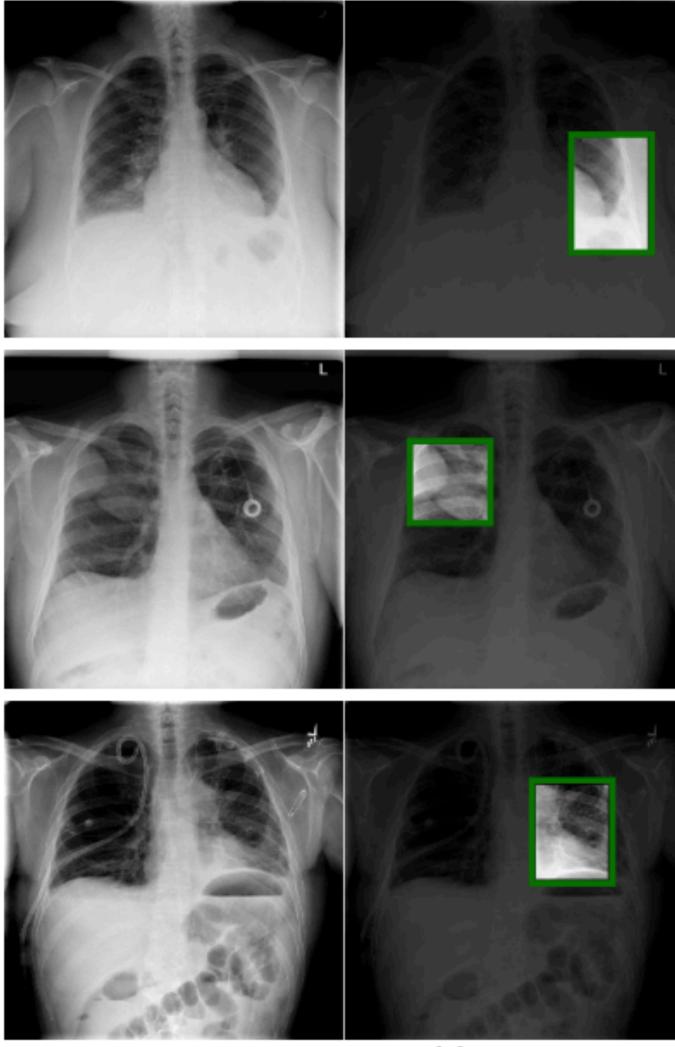
Expertise sometimes can be required

- Biomedical imaging annotation can be expensive
- Professionally trained radiologists
- Domain knowledge

Effusion

Mass

Infiltration

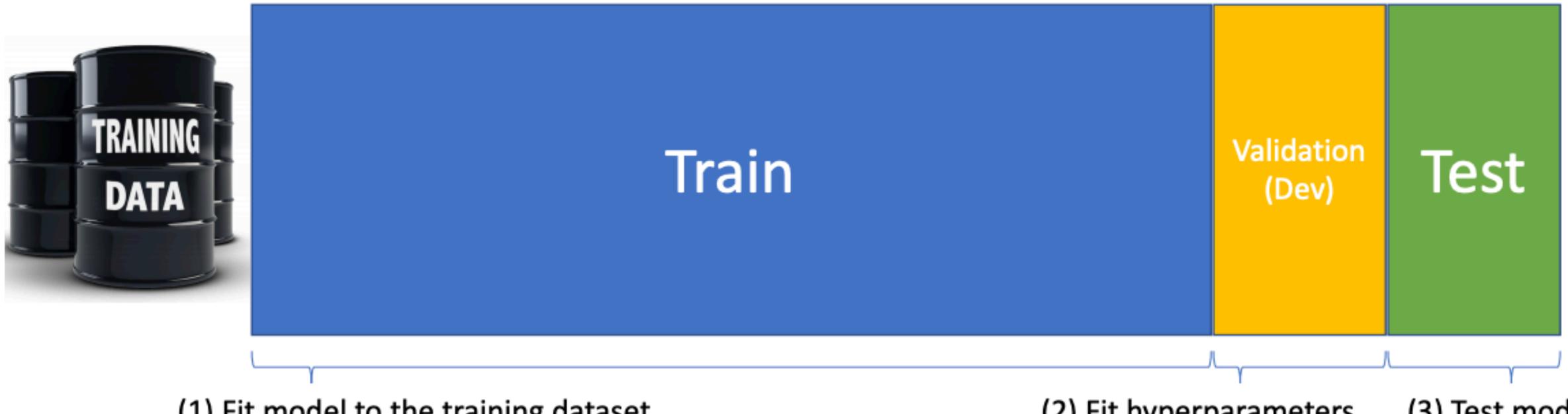


Input

Human annotation

Train/Dev/Test Split

Partitioning Data: Train, Test, and Validation



(1) Fit model to the training dataset

(2) Fit hyperparameters to the *validation* (or *development*) dataset

(3) Test model performance on the test set

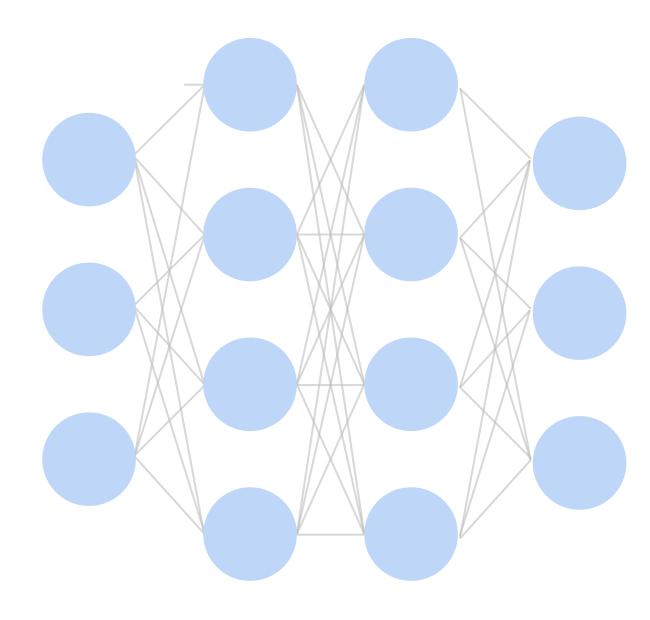
Slides credit: Chris Ré, Stanford CS229

What makes a good split?

- Ideal: Train, test, & dev randomly sampled
 - Allows us to say train quality is approximately test quality
- Test is a proxy for the real world! We'll talk more about this later...
- Challenge: Leakage.
 - (Nearly) same example in train and dev.
 - Causes performance to be overstated!
 - Eg., same senders in train and test?

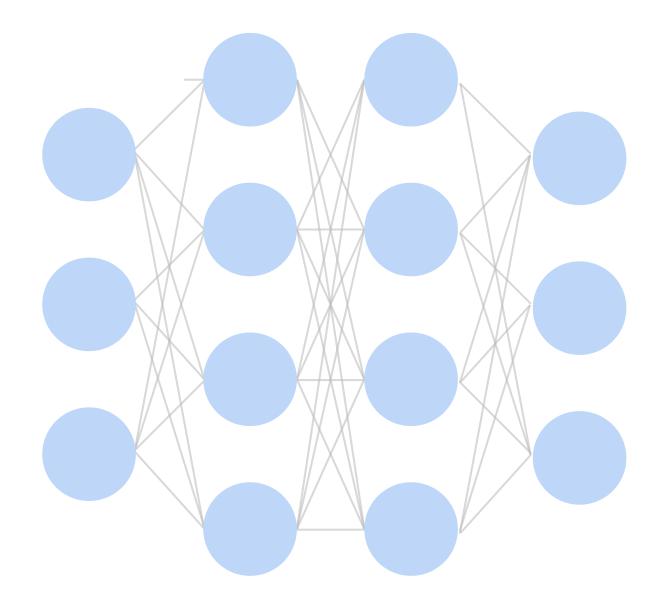
Slides credit: Chris Ré, Stanford CS229

Build your model.



Build your model.

- A bag of learning algorithms learned from class.
- •Simple model vs. deep models



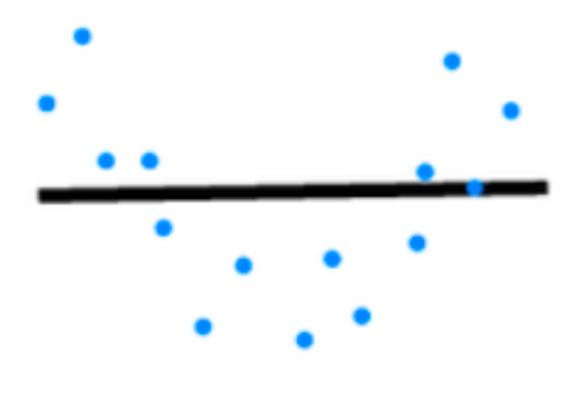
Underfitting Overfitting

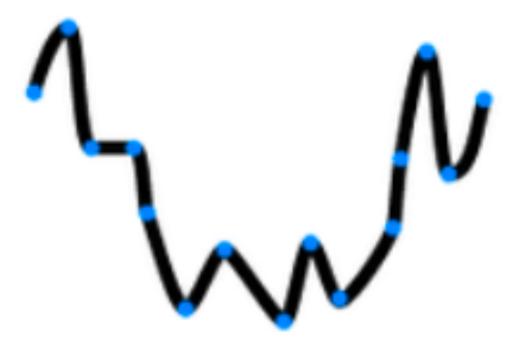
Image credit: hackernoon.com

Model Capacity

- The ability to fit variety of functions
- Low capacity models struggles to fit training set
 - Underfitting
- High capacity models can memorize the training set
 - Overfitting

inctions gles to





Underfitting and Overfitting

Low

High

Data complexity

Simple	Complex
Normal	Underfitting
Overfitting	Normal

Data Complexity

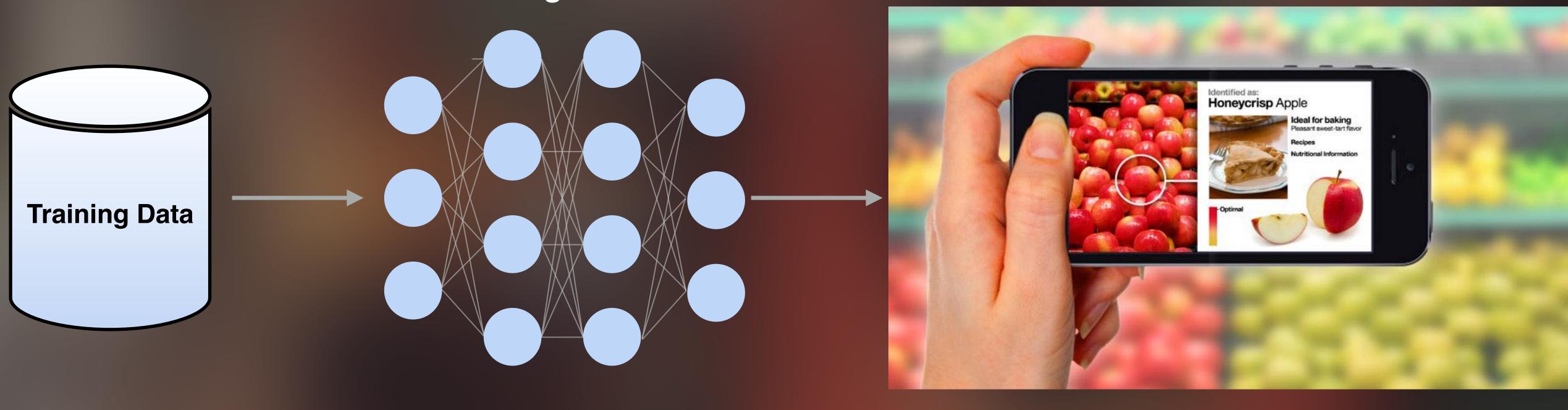
- Multiple factors matters
 - # of examples
 - # of features in each example
 - time/space structure
 - # of labels

Ablation studies.

- You've built up a model, it has many different components.
 - Which matter?
 - which are stable?
- Remove one feature at a time!
 - Adding features + baseline could overestimate overlap. How?
- Measure performance.
 - Critical for research!

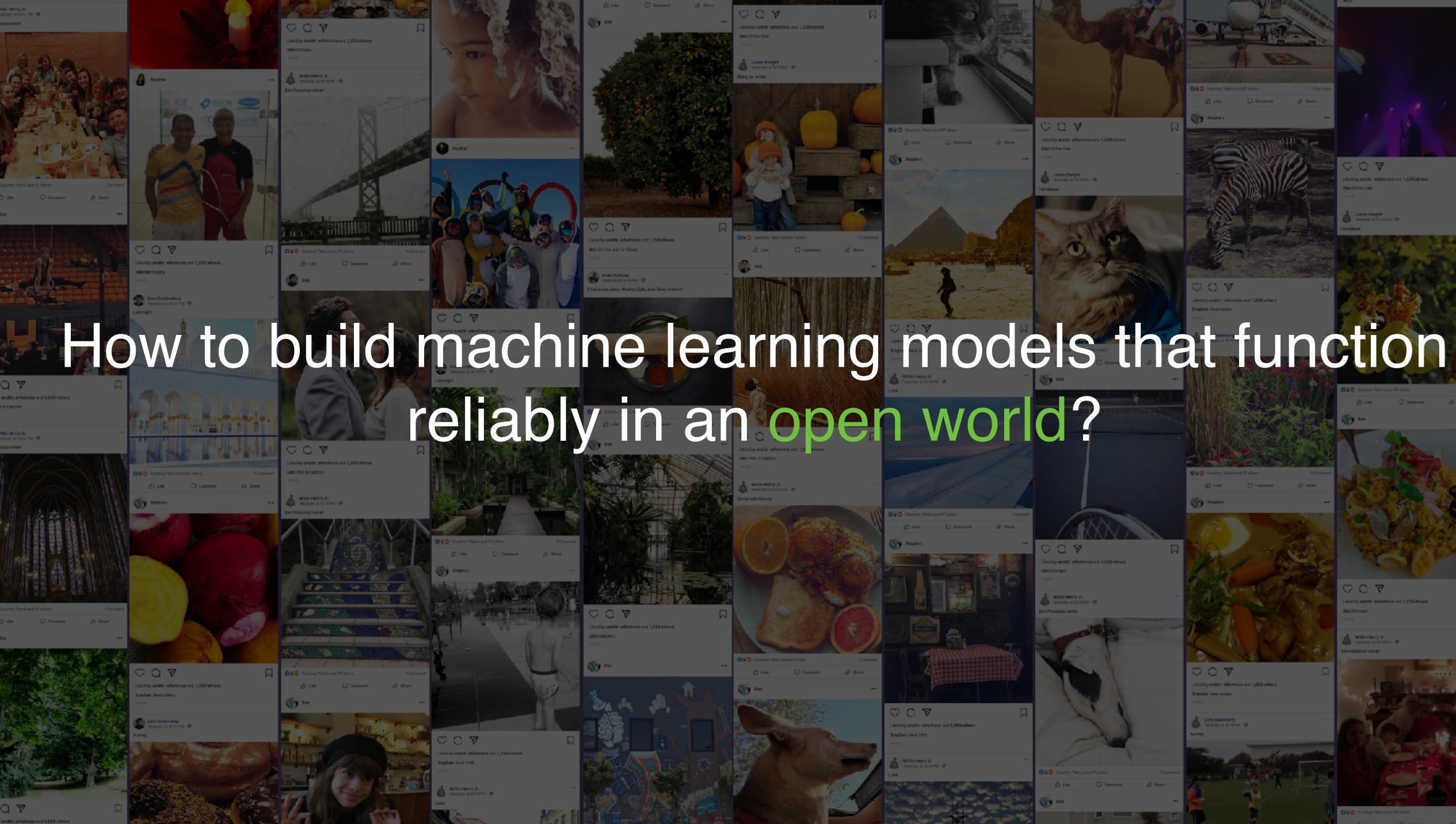
Slides credit: Chris Ré, Stanford CS229

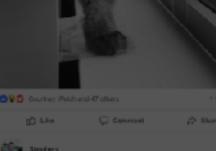
Food Image Classifier



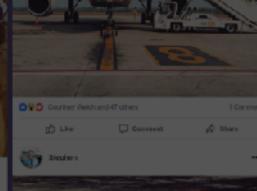
Closed-world: Training and testing distributions **match Open-**world: Training and testing distributions **differ**

A running example

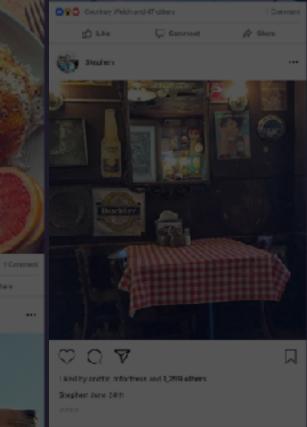




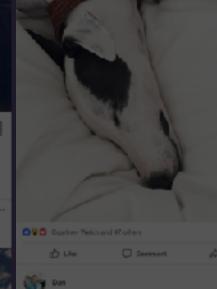
φQ	7
Liked by and th	infortness and 1,259 others
Dan /t the lake	



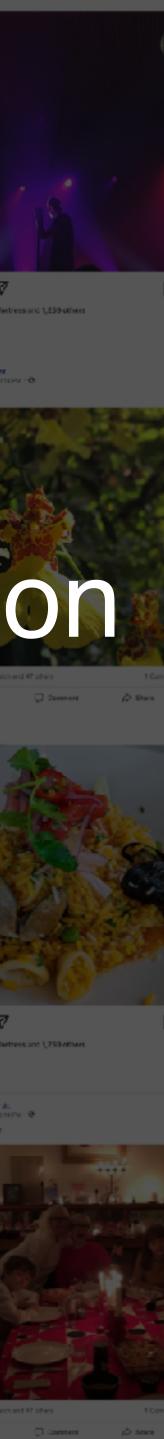
reliably in an open world?

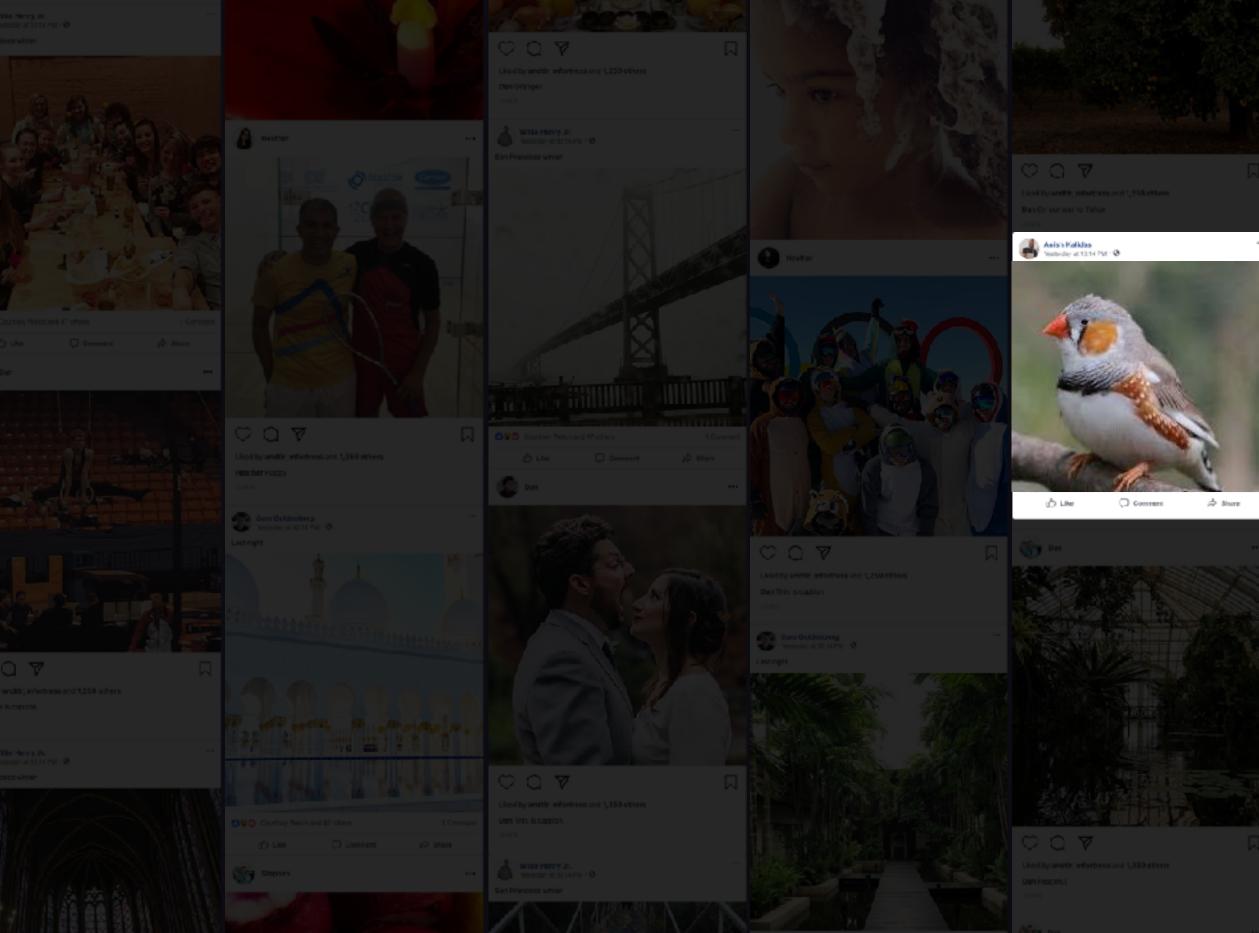


Testerday at 10 HPN - C



TESTEREN IN TUTATION OF





Out-of-distribution Uncertainty

C C V V Liked by anality infertness and 1,210 at Burghan Bestaulers same

Vesteral of a little ref. (

C Q 7

ΩV

Wile Henry Jr. Version of District -

Food Image Classifier

This is "out of distribution"

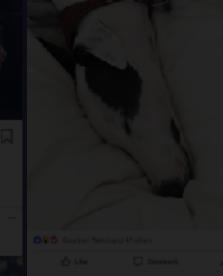
C Q V Liked by and k industries and 1,258 other team that is captors

> D Contrar Maharal Frahen (Connest p) Live Connest A then Stealer "

Q V

Ukad by another informest Den Oranges

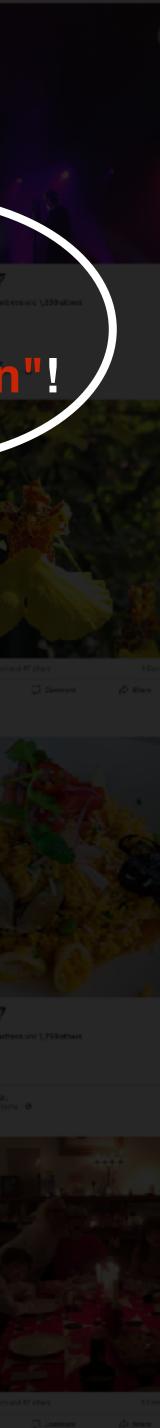
Characterization of the second second



Electric y anetic, mfortress a Simpler: Beri colars

Yurney

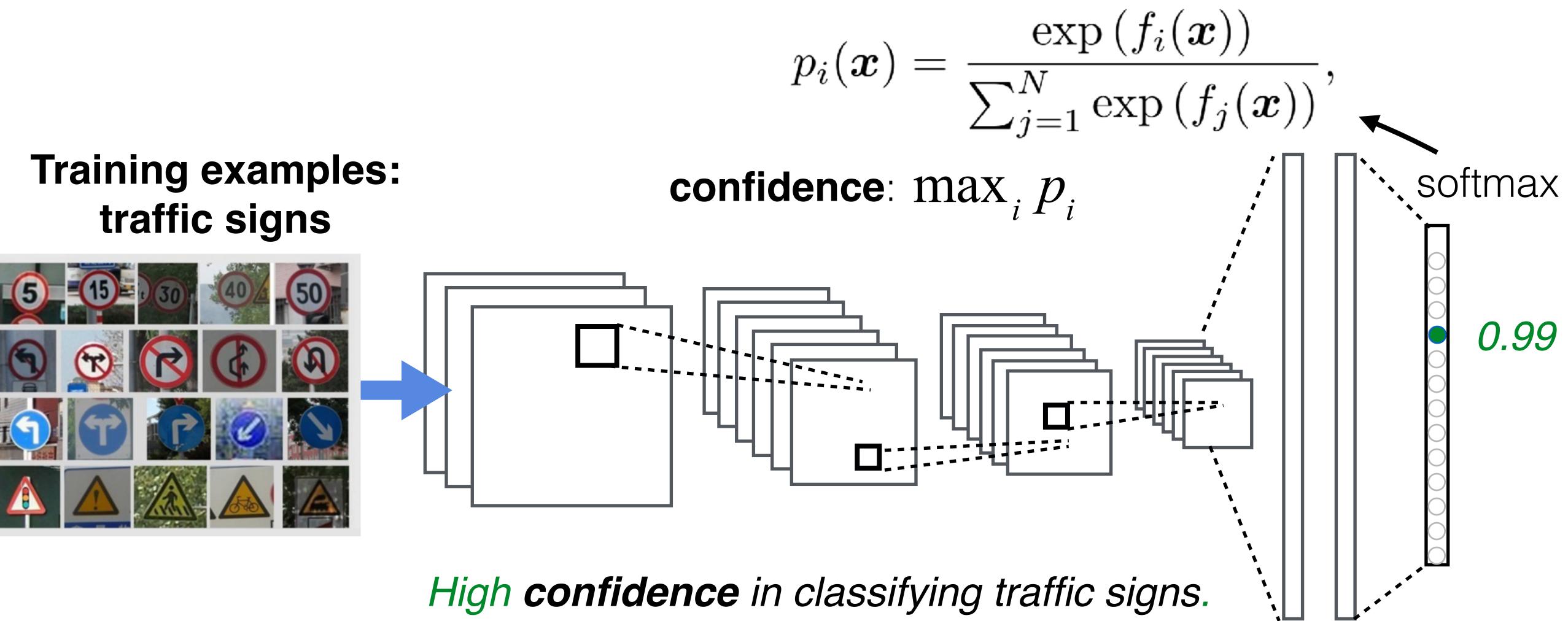
ğ ••



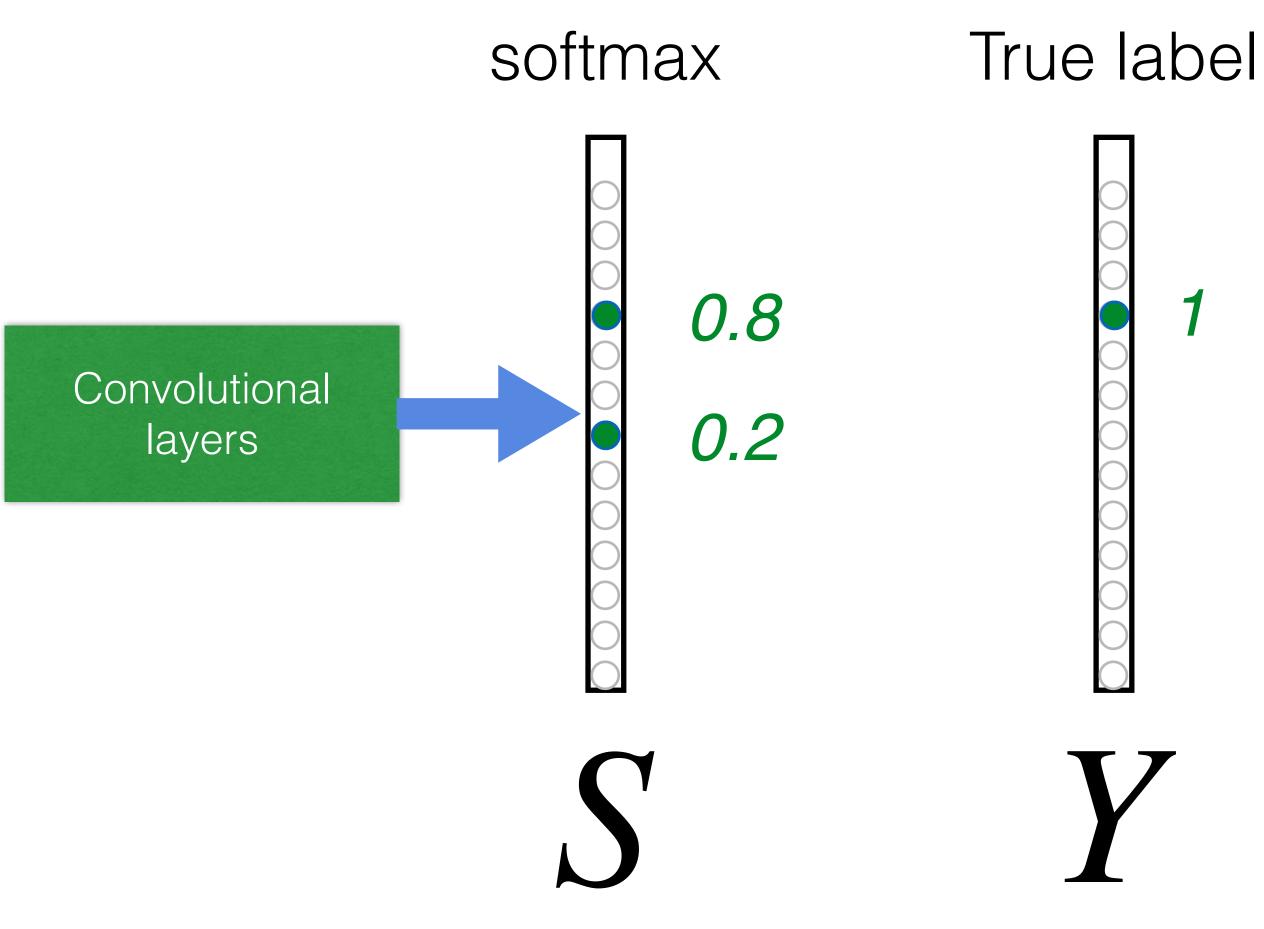
Out-of-distribution Uncertainty For safety critical applications

Photos from: CDC/GM

traffic signs



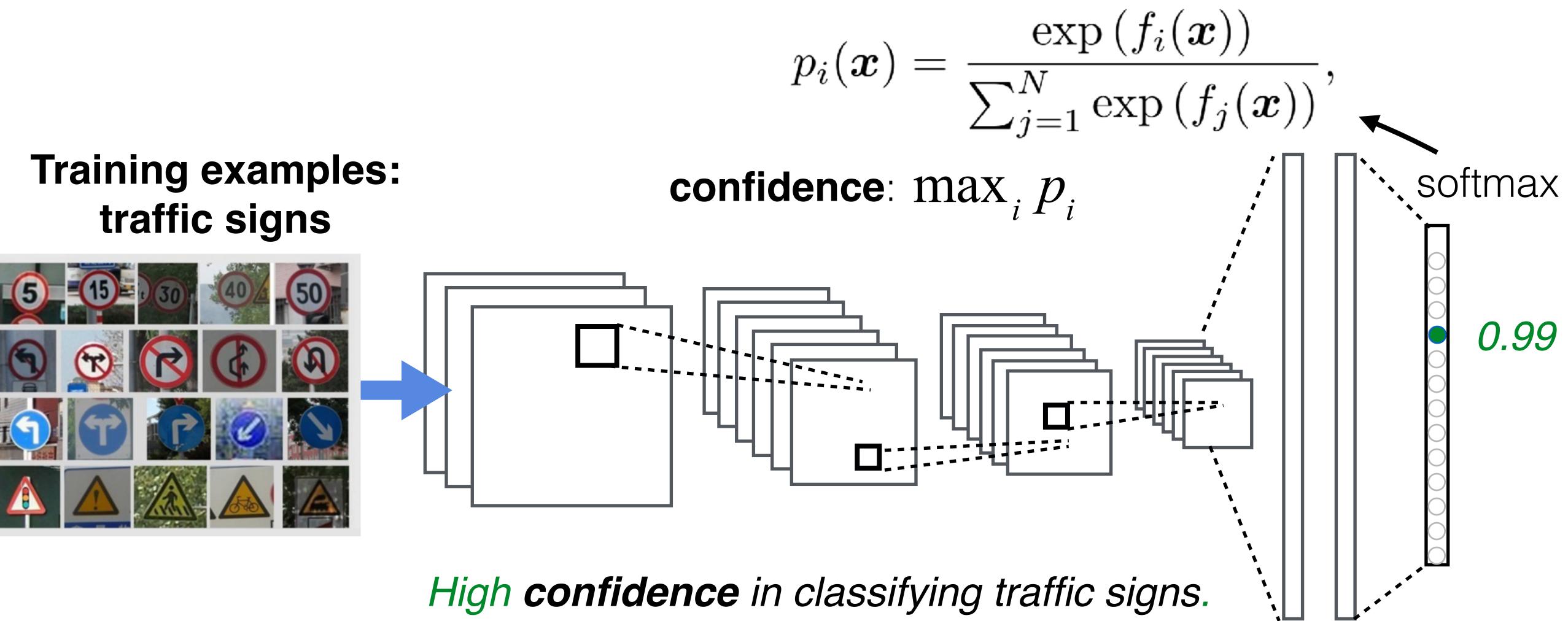
Cross-Entropy Loss

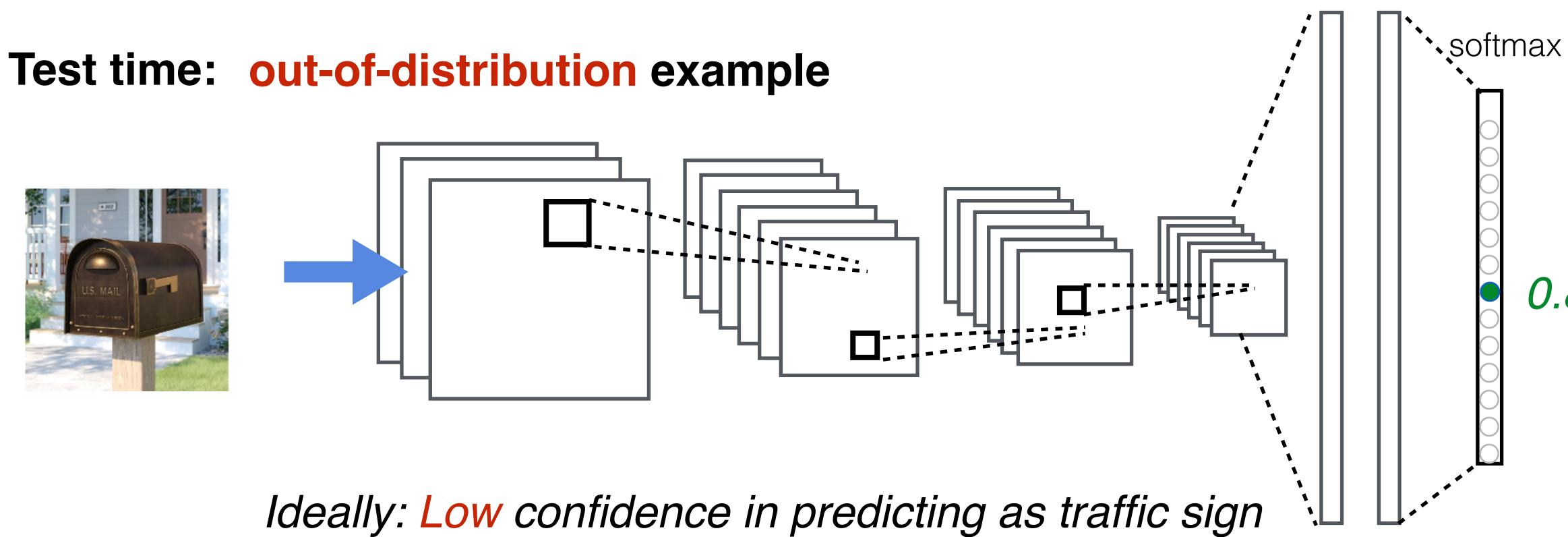


$L_{CE} = \sum_{i=1}^{n} -Y_i \log(S_i)$ $= -\log(0.8)$

Goal: push **S** and **Y** to be identical

traffic signs





0.85

Neural networks can be over-confident to out-of-distribution (OOD) examples.

[<u>Nguyen</u> et al. 2015]

Confidence Score Distribution

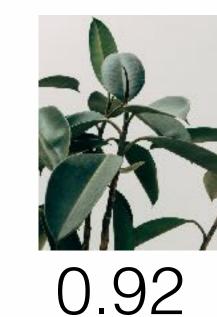
0.99

0.85

Score distribution

0.98

0.94



 $\bullet \bullet \bullet$

0.89

0.97

0.82

Confidence $\max_i p_i$

In-distribution

How can we distinguish out-of-distribution examples from in-distribution data?

ODIN: Out-of-distribution Image Detector [Liang et al. ICLR 2018]

Shiyu Liang

Sharon Y. Li R. Srikant

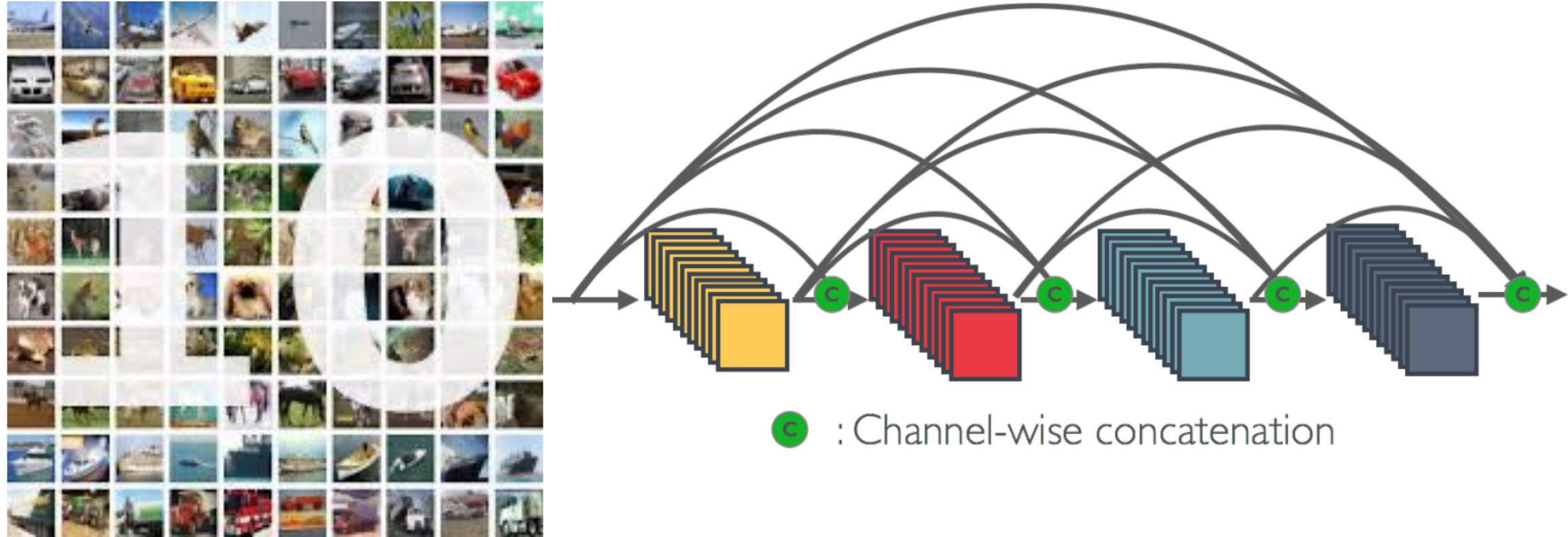
ODIN: Out-of-distribution Image Detector $p_i(\boldsymbol{x};T) = \frac{\exp\left(f_i(\boldsymbol{x})/T\right)}{\sum_{j=1}^N \exp\left(f_j(\boldsymbol{x})/T\right)},$ In-distribution Out-distribution

1/N

Confidence $\max_i p_i$

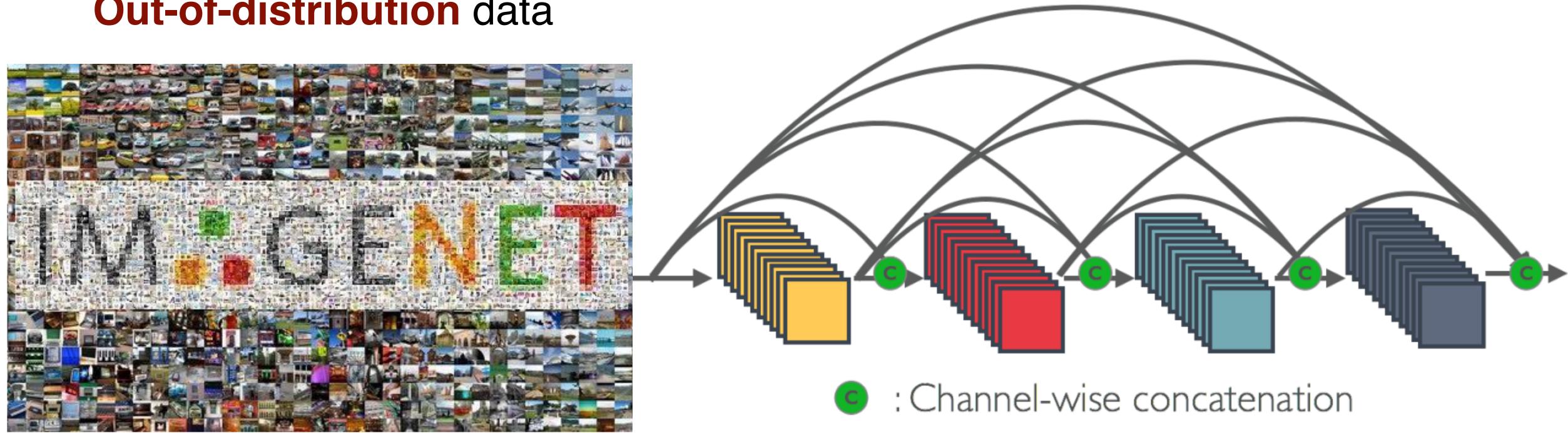
Training Task

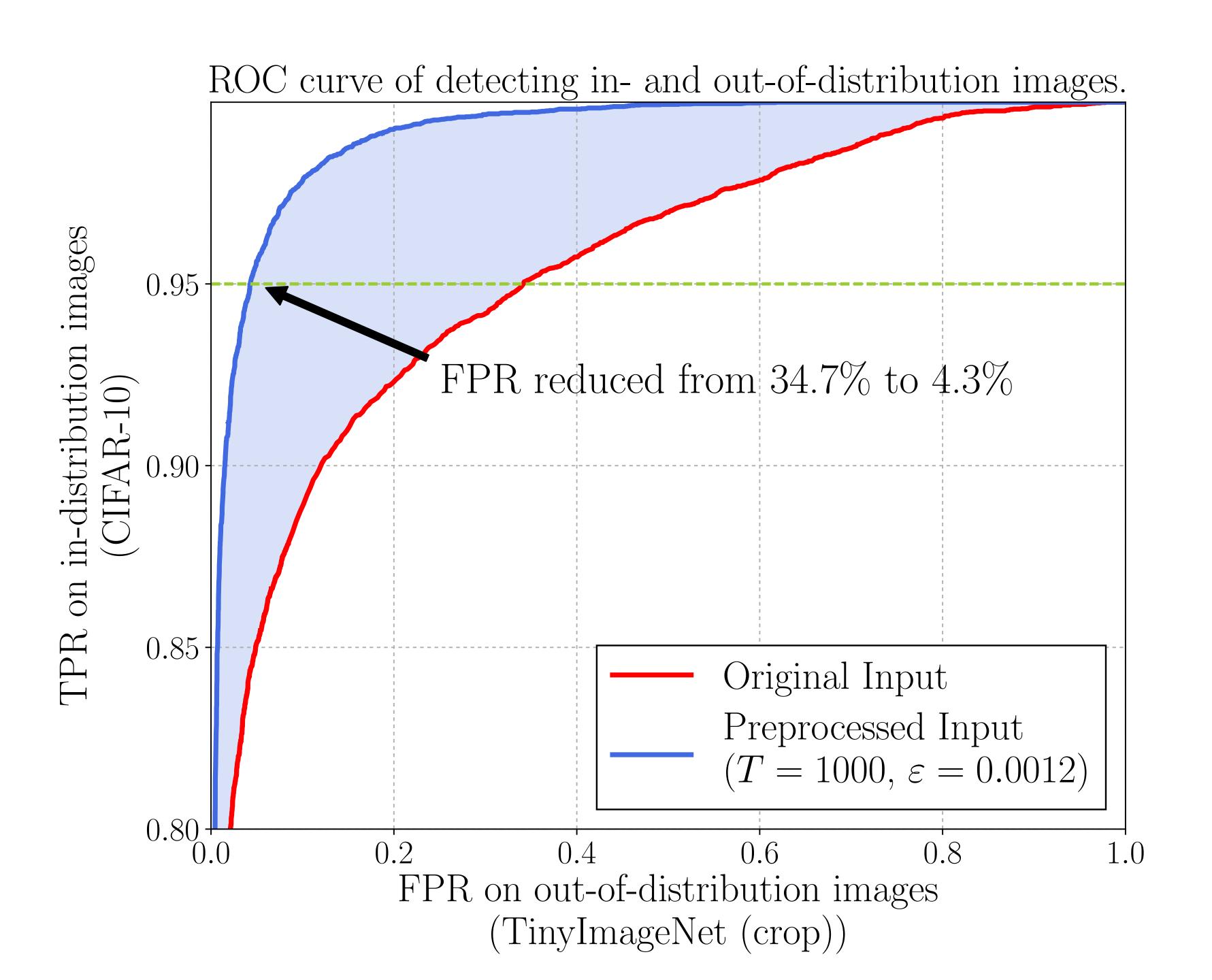
In-distribution data: CIFAR-10



Detection Task

Out-of-distribution data

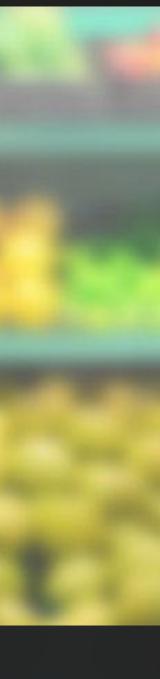




Results

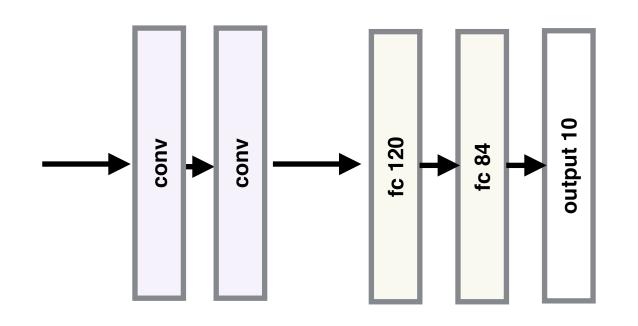
The steps overview

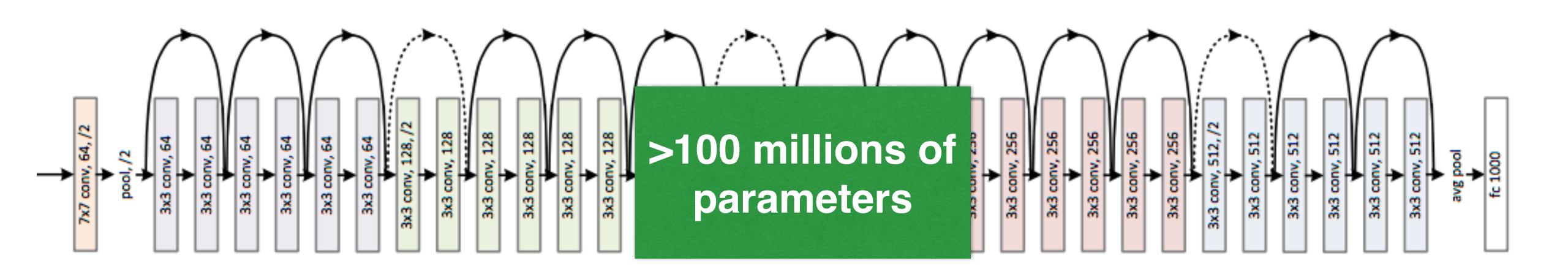
- Step 1: collect data
- Step 2: look at your data
- Step 3: Create train/dev/test splits
- Step 4: build model
- Step 5: Evaluate your model
- Step 6: Diagnose error and repeat



Industry-scale Machine Learning

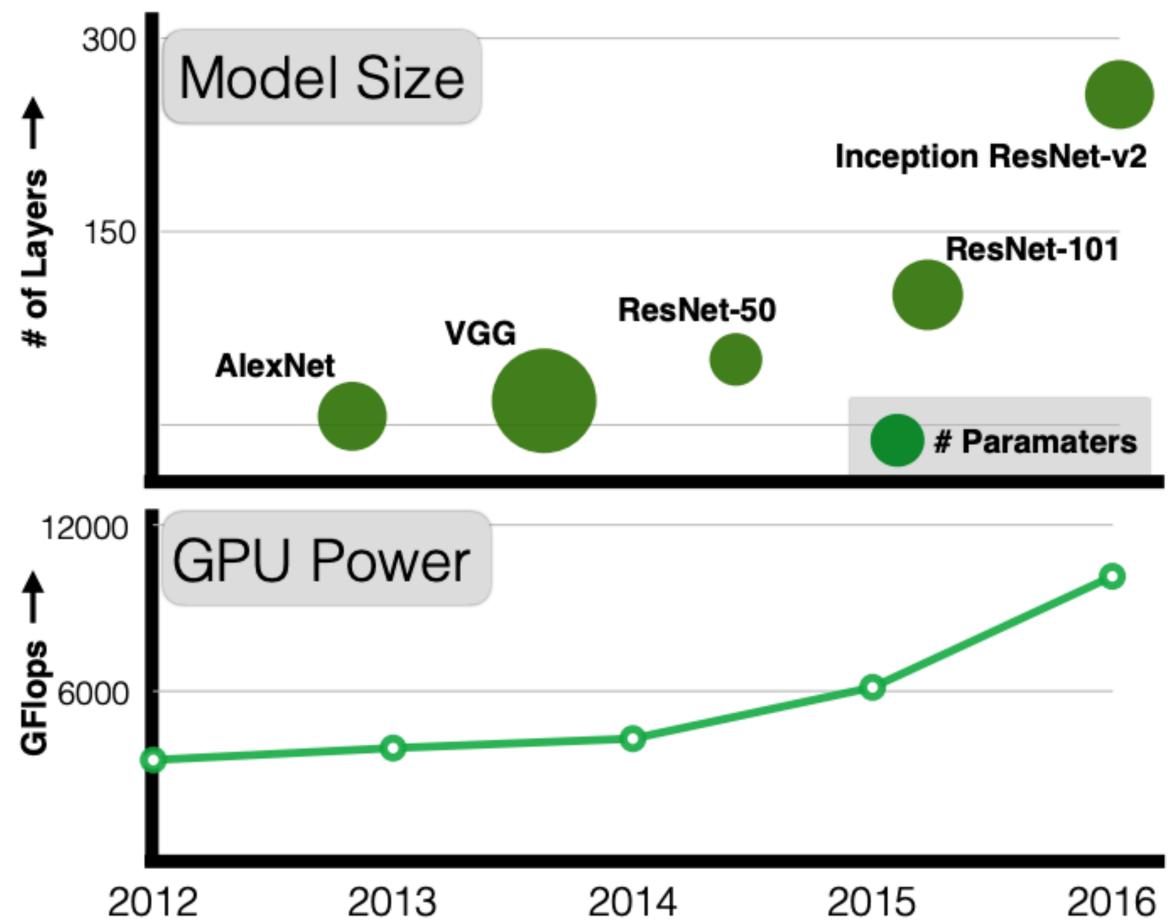
Model Complexity Keeps Increasing



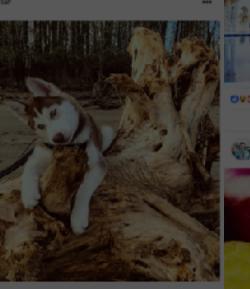


ResNet (He et al. 2016)

LeNet (Lecun et al. 1998)



[Sun et al. 2017]



ImageNet, 1M images ~thousand annotation hours

Challenge: Limited labeled data

x 1000

1B images ~million annotation hours

TRAINING AT SCALE

Levels of Supervision

Weeky \$8pperisedd

ImageNet

Un-supervised

A CUTEAC, ADOGOUPLE ??? F#CAOR Instagram/Flickr Crawled web image

TRAINING AT SCALE Noisy Data

Non-Visual Labels

#LOVE #CAT #DOG #HUSKY -

Incorrect Labels

Missing Labels

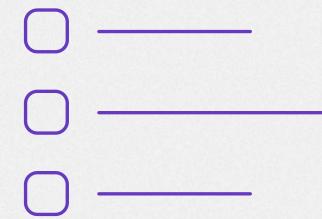
Can we use images with noisy labels for training?

[Mahajan et al. 2018]

Largest Weakly Supervised Training

3.5B **PUBLIC INSTAGRAM IMAGES**

LARGE CAPACITY MODEL **17K UNIQUE LABELS** (RESNEXT101-32X48)



DISTRIBUTED

TRAINING (350 GPUS)

[Mahajan et al. 2018]

Self-supervised Learning (no label)

"Pure" Reinforcement Learning (cherry)

- The machine predicts a scalar reward given once in a while.
- A few bits for some samples
- Supervised Learning (icing) The machine predicts a category or a few numbers for each input Predicting human-supplied data
 - > 10 \rightarrow 10,000 bits per sample

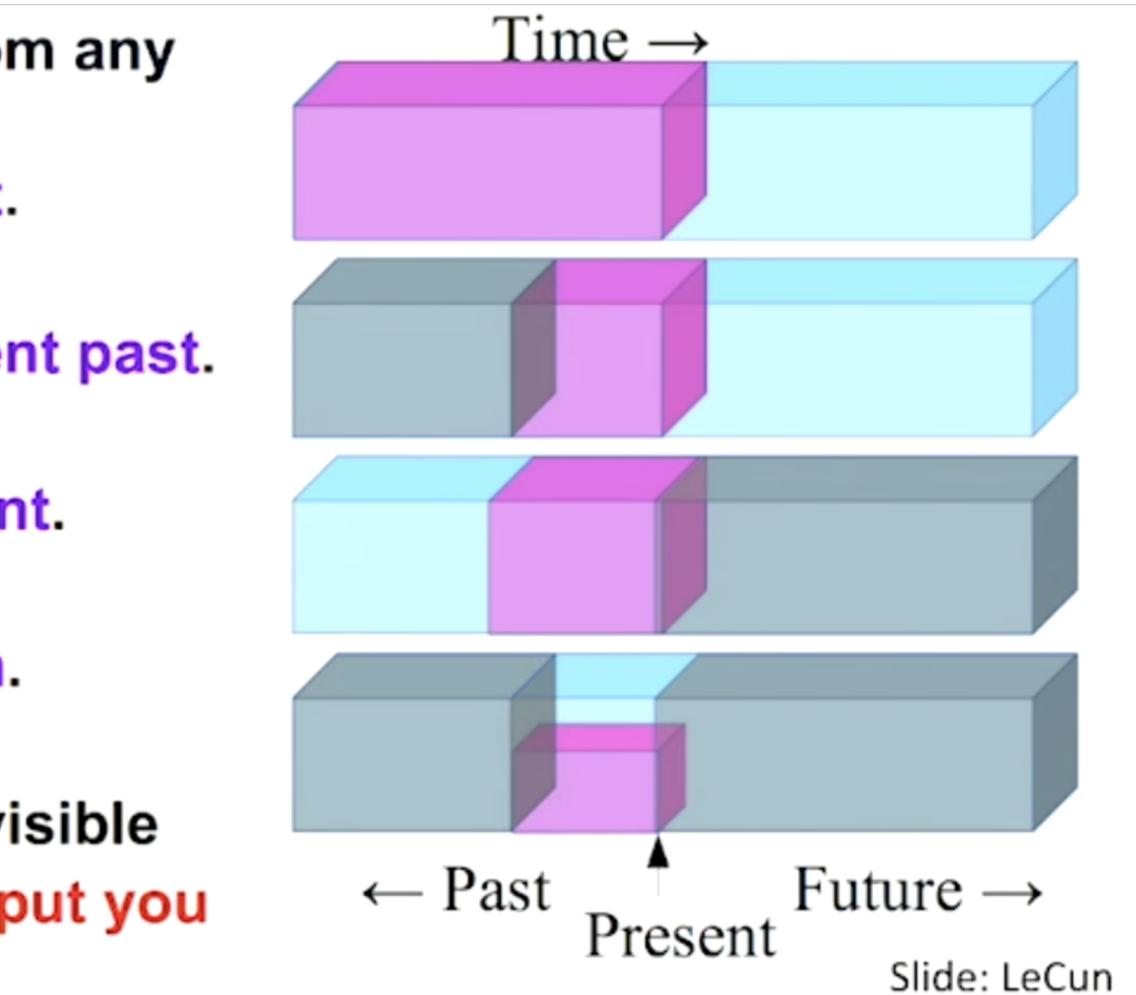
Self-Supervised Learning (cake génoise) The machine predicts any part of its input for any observed part.

Source: Yann LeCun's talk

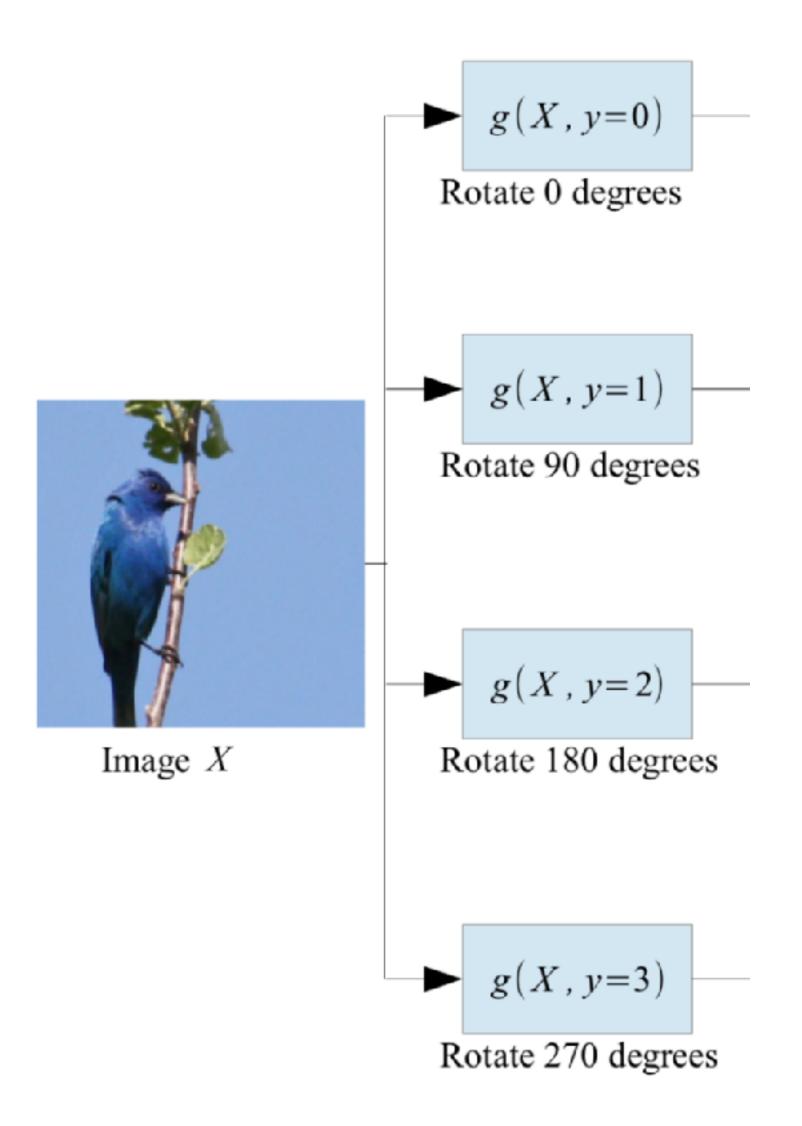
What if we can get labels for free for unlabelled data and train unsupervised dataset in a supervised manner?

Pretext Tasks

- Predict any part of the input from any other part.
- Predict the future from the past.
- Predict the future from the recent past.
- Predict the past from the present.
- Predict the top from the bottom.
- Predict the occluded from the visible
- Pretend there is a part of the input you don't know and predict that.

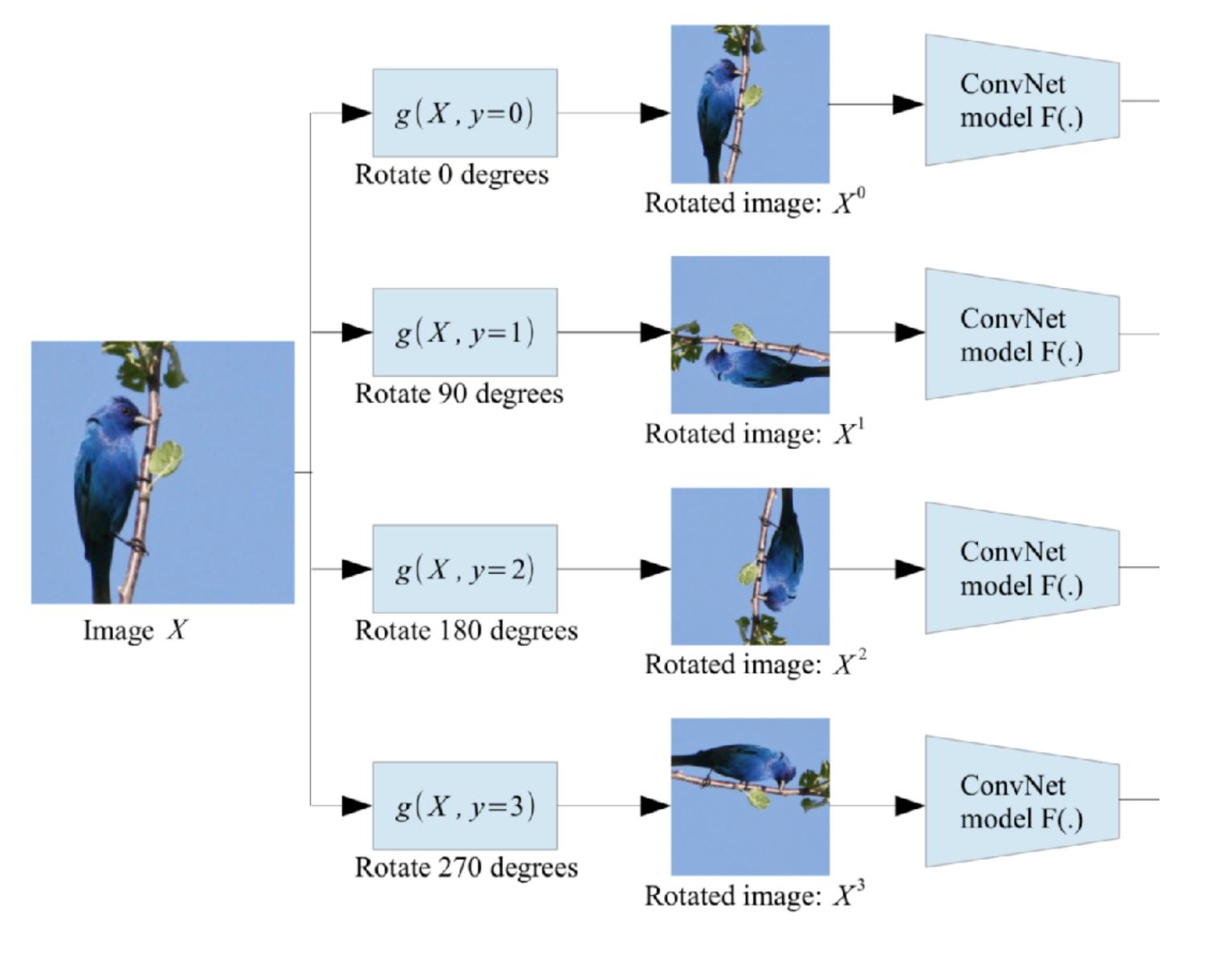


Rotation

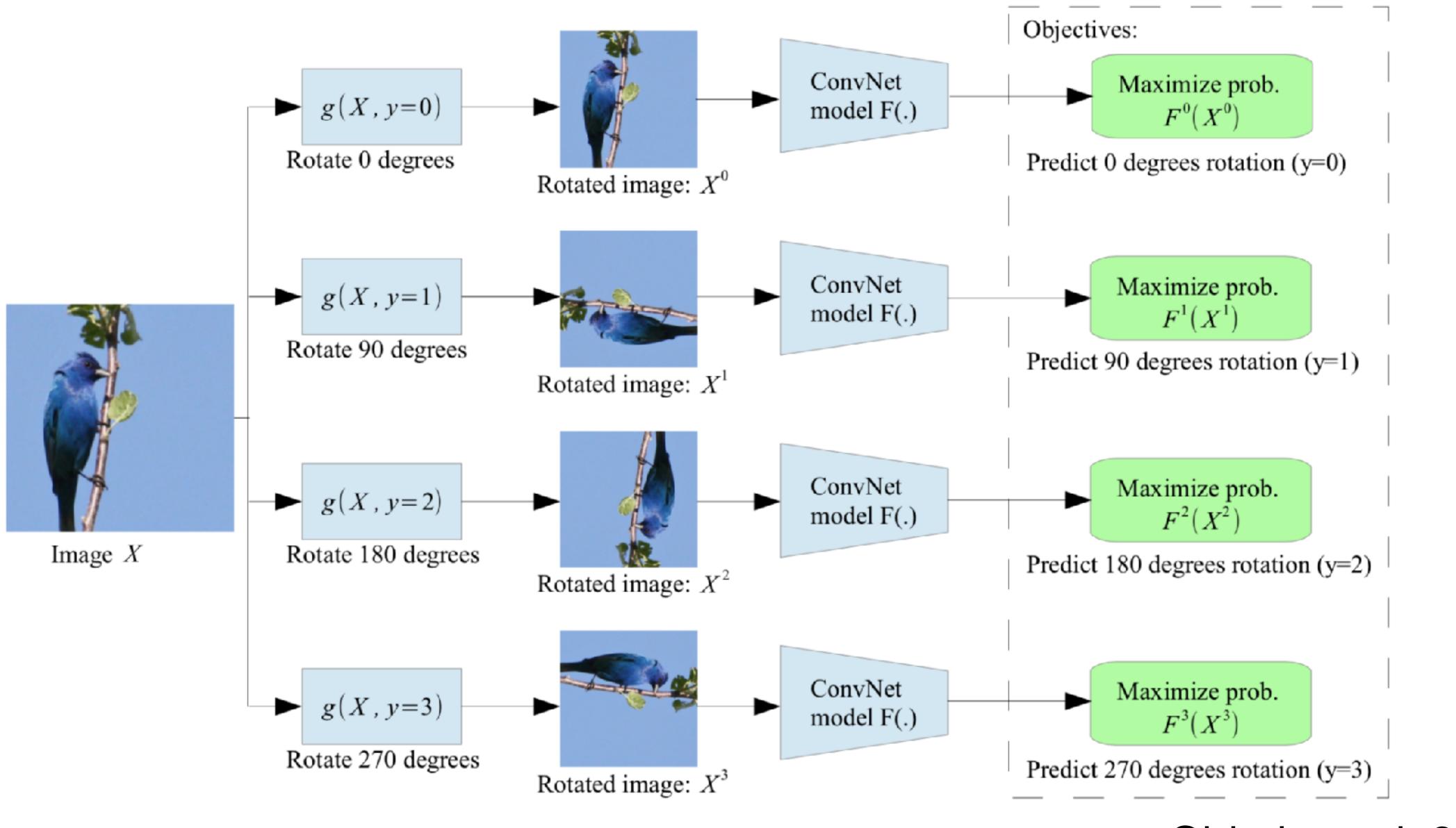


[Gidaris et al. 2018]

Rotation

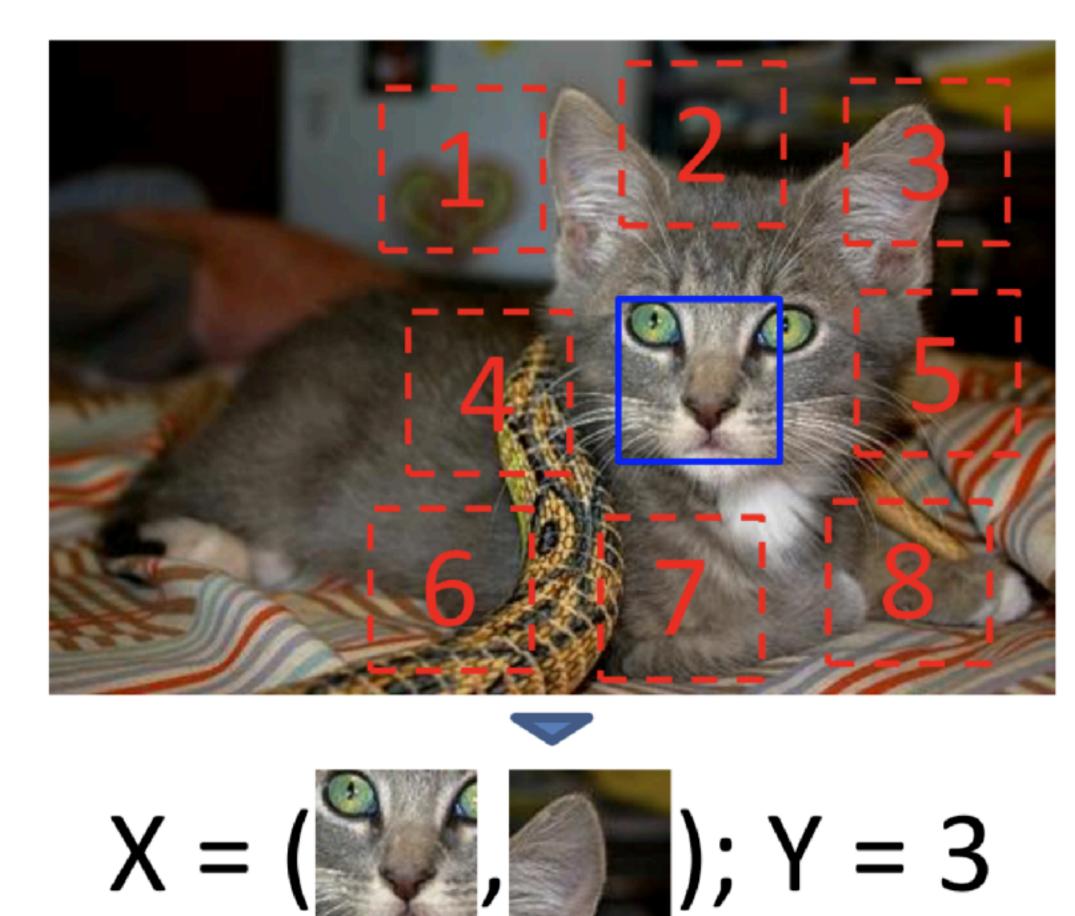


Gidaris et al. 2018



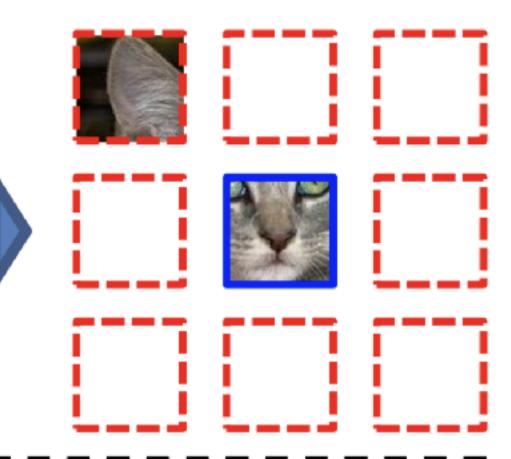
Rotation

Gidaris et al. 2018



Patches

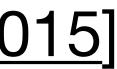
Example:



Question 1:

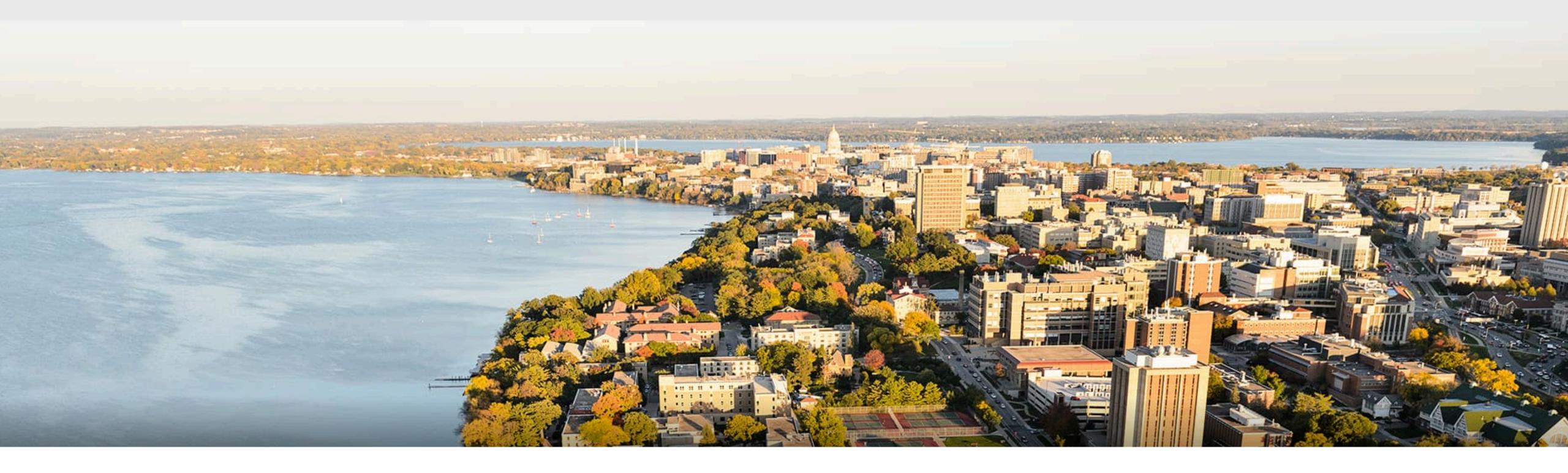
Question 2:

[Doersch et al., 2015]



- Basic steps to build an ML system
- **Open-world machine learning**
- Industry-scale machine learning \bullet

Summary



Thank you!